Dimension reduction and manifold learning

Dimension estimation, manifold estimation

Eddie Aamari
Département de mathématiques et applications
CNRS, ENS PSL
Master MASH — Dauphine PSL



Dimension estimation



Hyperparameters

Most of the methods crucially required two types of parameters.

Bandwidths

For building neighborhood graphs (All methods)

k-nearest neighbors
r-neighborhood

For building functions on the graph

Kernel scale o or t (Laplacian methods, k-PCA)
Localization radius & in local PCA (Hessian LLE, LTSA)
Dimension

For determining the output dimension

Dimension is inherent to dimensionality reduction.



Intrinsic Dimension

Pioneers in intrinsic dimension estimation
This question dates back to bennett1969intrinsic in signal processing.
The intrinsic dimensionality of a collection of signals is defined
to be equal to the number of free parameters required in a hypotheti-
cal signal generator capable of producing a close approximation to

each signal in the collection. Thus defined, the dimensionality
becomes a relationship between the vectors representing the signals.

Overview

See camastra2016intrinsic for a recent survey.



A Statistical Remark

We are trying to estimate a discrete quantity

de{0,...,p}

If x1,..., 2, ~yq Unify;, we hence expect fast estimation rates of the form
P(d # dim(M)) < Cexp(—C'n),

where d = d(z1,...,x,) is some wisely chosen estimator.



A Statistical Remark

We are trying to estimate a discrete quantity

de{0,...,p}
If x1,..., 2, ~yq Unify;, we hence expect fast estimation rates of the form
P(d # dim(M)) < Cexp(—C'n),
where d = (f(xl, ..., y) is some wisely chosen estimator.

A Take-Away Message

[ # {Definitions of dimension} =< # {Estimators of dimension} > 1




Hausdorff and Information Dimension

The Hausdorff dimension dimpg (M) of M C RP? is defined through
I‘g) = lim inf Zrl,

r—0t x1,.. ,J:NES
r; <r

UiB(zz,T ) DM

and dimy (M) := inf {d |74 = o} € [0,p]




Hausdorff and Information Dimension

Definition
The information dimension dimg (P) of a probability measure P, is the smallest Hausdorff
dimension of sets that have measure 1.

(For non-pathological cases, dimg (P) = dimg (Support(P)))




(Generalized) Traveling Salesman Problem

kim2019minimax study the testing problem

Ho: dim(M) = dy VS Hqi: dim(M) = dy

where 1 < dy < di < p are fixed.

Generalized TSP Leverage of the behavior of the generalized Travelling Salesman Problem

(TSP) value
- d
TSPy, (X) := Unelé,n ZH&UJ (+1) — To(i) |,
where G,, is the set of permutations of {1,...,n}.



(Generalized) Traveling Salesman Problem

kim2019minimax study the testing problem
Ho: dim(M) = dy VS Hqi: dim(M) = dy

where 1 < dy < di < p are fixed.

Generalized TSP Leverage of the behavior of the generalized Travelling Salesman Problem

(TSP) value
- d
TSPy, (X) := Unelé,n ZH&UJ (+1) — To(i) |,
where G,, is the set of permutations of {1,...,n}.

Intractability
Generalized TSP is NP-complete



Insights Behind Generalized TSP

n

TSPq, (%) := min D lZo(it1) — To@ 1
" i=1

[_IT




Insights Behind Generalized TSP

n

TSPq, (X) := Urgign Z | Zo(i41) — Ta(s) |
n i—1

11

dp < dim(M dy = dim(M do > dim(M
TSPy, (X) —) 00 TSPy, (X) = @(1) TSPy, (X ) — 0




TSP Test

For 1 < dy < dy < p fixed,

ﬂxy:{% if TSPy, (X) < C,

dy otherwise.

Convergence Result

Theorem (kim2019minimax)

Assume that M is C? smooth and w1, ..., %, ~iiq P uniform on M. If dim(M) € {dy,d},
then

1)(%—0"

P() # (M)  Lamon-a,



TSP Estimator
Define

d(X) := min {dg |TSP4, (X) < Cy, }

Convergence Result

Theorem (kim2019minimax)

If that M is C?> smooth and x1, . .., &y ~iiq P uniform on M, then

(i) # dim(on) £ ()



Differential / Topological Dimension

Definition
The of M C RP is the dimension dimpg(M) of the model space that
locally parametrizes it.

= Local flatness (Essentially assuming manifold structure)

10



ntial / Topological Dimension

Definition
of M C RP is the dimension dimpg(M) of the model space that

The
locally parametrizes it.
(Essentially assuming manifold structure)

= Local flatness

< Thresholding principal components fukunagal971lalgorithm

10



Local linear residuals

N

Step 1: Localize
Pick a point x € X, a localization radius h > 0, and set

Xy (z) == XN B(x,h) —z

Step 2: Singular Value Decomposition

Compute the SVD of the matrix associated with )Eh(x) Store the singular values \; >
> A

Step 3: Vary thresholds

Plot the residual error (or explained variance)

ZZ:d-‘rl A

d—
2:1 Ak

and search for a gap.

11



lllustration

—— 100 points.
—— 1000 points
—— 10000 points.

06|

05

0:4]

Normalized variances
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lllustration

£ & &8 g

Normalized variances

"7 brincipal component indices
From Local to Global
In practice, need to aggregate the estimated dimensions d(z).

Trial and Error
Such a post-hoc error measurement also applies to any (local) MDS-based dimension reduction
technique.

12



Nearest Neighbors

Instead of fixing a bandwidth, one can also regressing
k-Nearest Neighbor distances

fukunagal971algorithm show that if z1,...,z, ~iq
f(x)\g(dx) and z € RY with f(x) > 0 continuous at
x, then

Ell|lz@ — 2] o k¢

13



Nearest Neighbors

Instead of fixing a bandwidth, one can also regressing
k-Nearest Neighbor distances

outliers

fukunagal971algorithm show that if z1,...,z, ~iq
f(x)\g(dx) and z € RY with f(x) > 0 continuous at
x, then

Elle) — ] o< K1/

Fig. 1. Procedure for computing d.
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Correlation Dimension

Leveraging local neighborhood properties can also be done by noticing that if x, 2’ ~ Ad,

P(||lz — || < r) < rd.

This leads to the correlation dimension, based on
2
CorP(P) := Pm@/%P(Hx —2'|| <r),

and defined as

14



Correlation Dimension

Estimator
Given x1,...,x, ~jiq P, consider the U-statistic
T = 1
G &= nn—1) Z i —a5]|<rs
7<J

with associate dimension estimator

/\(2>
P log Cor,.
door,2 1= lim ————
r—0 logr

Convergence

See results in kegl2002intrinsic and higher-order.

15



Covering Number

Definition
Given M C RP, the of M is
cvp(r) :==min {N ’321, ..,z ERP st M C UL, B(zy,7) }
o log eva(r)
The of M is dim,. (M) == ————=.
—logr

For M = [0, 1], EB

16



Minkowski / Capacity Dimension

Definition
The of M is
dimpgin (M) := lim sup dim,.(M).
r—0
Insights

If dimyg, (M) = d, we expect that
log cvpr(r) ~po —dlogr

Regression

We can regress
r— logevy(r)

17



Minkowski / Capacity Dimension

Two-Scales Estimation

Instead of regression, kegl2002intrinsic uses the fact that for all small 7y < 74,

logevar(r) —logeva(re)  —dlogry — (—dlogrs)

~ =d.
logry — logry log 1o — logry

Limitations
Still a choice of bandwidth(s) parameter(s).

Costly to compute directly on data (involves covering numbers).

Wayaround
Try to observe the dimension indirectly on a simpler object.

18



Partial Coverings

weed2019sharp introduce the

Idea

When working with instead of sets, it is convenient to be able to

Definition

The of a probability measure P on RP? is
cvp(r,7) :=min{cvg(r) |P(S) > 1—7}.

Its is

. logcvp(r,7)
dlmm_(P) = Tgr

19



Definition (weed2019sharp)

The upper and lower Wasserstein dimensions of P are respectively

c_l(p)(P) := inf {5 > 2p

limsup dim _s» (P) < s}

r—0 r,r =2

d?)(P) := lim lim inf dim,. . (P).

7—0 7r—0

20



Definition (weed2019sharp)

The upper and lower Wasserstein dimensions of P are respectively

E(p)(P) — il {5 > 2p

limsup dim _s» (P) < s}

r—0 7,7 $=2P

d?)(P) := lim lim inf dim,. . (P).
7—0 r—0

Links with other dimensions

If P(B(z,7)) =< r? then 8(”)(13) =d= d(p)(P)

Generalizable to arbitrary ambient metric space.

20



Wasserstein Dimension

Convergence of the Empirical Distribution

Theorem (weed2019sharp)

Let p > 1. Assume that x1, ..., T, ~gq P on R?. and write P, :=n~! Z?zl 0, for the
empirical measure.

If s> dim” (P), then E[W,,(P, P,)] < n~1/s.
Ift < dim™ (P), then E[W,(P, P)] 2 n~"/*.

21



Wasserstein Dimension

Convergence of the Empirical Distribution
Theorem (weed2019sharp)
Let p > 1. Assume that x1, ..., T, ~gq P on R?. and write P, :=n~! Z?zl 0, for the
empirical measure.
If s> dim” (P), then E[W,,(P, P,)] < n~1/s.
Ift < dim® (P), then E[W,(P, P,)] 2 n~/t.

The upper bound comes from a spatial

The lower bound holds for all distribution P,, supported on n Dirac. It arises from a

argument.

Fine results on W,(P, P,,) in dedecker2019behavior.

21



block2021intrinsic leverage this sharp behavior as follows.

Bootstrap-Style Method
Given 0 < a < 1, subsample: (need 2(1 + a)n independent sample)
P,, P}, each arising from n observations each
Py, P.,, each arising from an < n observations each
As
1/d
take

o - log o
W lOgW1( ny ) logwl(Pana Pan)

Which Wasserstein Metric?
Possibility to use the (estimated) geodesic metric in Wasserstein.

22



Geometric inference



Take a step back

Throughout, we have tried to embed points X C R? to ) C R? while preserving the geometry
of X.

If we assume that X C M are sample from a submanifold M C RP:

Preserving the geometry of X
=

dar (@i, 25) = |lyi — yjll

23



Take a step back

Throughout, we have tried to embed points X C R? to ) C R? while preserving the geometry
of X.

If we assume that X C M are sample from a submanifold M C RP:

Preserving the geometry of X
=

dar (@i, 25) = |lyi — yjll

The geodesic distance on M (or shortest-path distance)
dyr: M x M — Ry U {OO}

. f /
(z,y) %%irych/llvﬁyll

Ct curve
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Take a step back

Throughout, we have tried to embed points X C R? to ) C R? while preserving the geometry
of X.

If we assume that X C M are sample from a submanifold M C RP:

Preserving the geometry of X
=

dar (@i, 25) = |lyi — yjll

The geodesic distance on M (or shortest-path distance)
dyr: M x M — RZO U {OO}
. ’
R Wy A

z—y

Ct curve

[ What about only estimating d;; without embedding? ] .




m. — Regression / Set estimation

Figure 1. (a) The linear regression line minimizes the sum of squared deviations in the response variable. (b) The principal-component line
minimizes the sum of squared deviations in all of the variables. (c) The smooth regression curve minimizes the sum of squared deviations in the
response variable, subject to smoothness constraints. (d) The principal curve minimizes the sum of squared deviations in all of the variables,
subject to smoothness constraints.

Figure 1: from hastie1989principal 24



Hausdorff Distance

Definition (Hausdorff Distance)
The Hausdorff distance between two compact sets A, B C R” is

du(4, B) = [|d(-, 4) = d(, B) oo

where d(z,C) := 12£||x — c|| is the distance to C C RP.
c

B

25



— The distance function to M : (used to identify sets as functions)

d(-,M): RP — R
T H;gljvl}llx—pll

— The geodesic distance on M :

das: ]V[X]\JHRZ()U{OO}

9 f /
@) =it [l
C' curve

26



From Manifold Estimation to Metric Learning

Theorem (Aamari, Berenfeld, Levrard — 2023)

Assume that M C RP is C2-smooth. Then there exists rchy; > 0 such that for all M  RP
such that dg(M, M) < € < rchys/2,

Sup |dM(I7 y) - d(M)a (xa y)| 5 67
r#YyeEM

where (M) := {u € R? | d(u, M) < €} is the e-offset of M.

T
I
~

dH(Au.M

Y
27



From Manifold Estimation to Metric Learning

Theorem (Aamari, Berenfeld, Levrard — 2023)

Assume that M C RP is C2-smooth. Then there exists rchy; > 0 such that for all M  RP
such that dg(M, M) < € < rchys/2,

Sup |dM(I7 y) - d(M)a (xa y)| 5 67
r#YyeEM

where (M) := {u € R? | d(u, M) < €} is the e-offset of M.

. Ve

dH(Au.M

Y

T
I
~

27



From Manifold Estimation to Metric Learning

Theorem (Aamari, Berenfeld, Levrard — 2023)

Assume that M C RP is C2-smooth. Then there exists rchy; > 0 such that for all M  RP
such that dg(M, M) < € < rchys/2,

sup |dM(I7y) - d(M)a (l’,y)| /S g,
r#YyeEM

where (M) := {u € R? | d(u, M) < €} is the e-offset of M.

dH(A\LM

Y

=
Il
=

27



From Manifold Estimation to Metric Learning

Theorem (Aamari, Berenfeld, Levrard — 2023)

Assume that M C RP is C2-smooth. Then there exists rchy; > 0 such that for all M  RP
such that dg(M, M) < € < rchys/2,

Sup |dM(I7 y) - d(M)a (xa y)| 5 67
r#YyeEM

where (M) := {u € R? | d(u, M) < €} is the e-offset of M.

1o

'Y .
dH(M,WM —x

Y
27



From Manifold Estimation to Metric Learning

Theorem (Aamari, Berenfeld, Levrard — 2023)

Assume that M C RP is C2-smooth. Then there exists rchy; > 0 such that for all M  RP
such that dg(M, M) < € < rchys/2,

Sup |dM(I7 y) - d(M)a (xa y)| 5 67
r#YyeEM

where (M) := {u € R? | d(u, M) < €} is the e-offset of M.

X‘\‘\//M
4 s, ~
dg(@4, X) M=X

Y
27



From Manifold Estimation to Metric Learning

Theorem (Aamari, Berenfeld, Levrard — 2023)

Assume that M C RP js C2-smooth. Then there exists rchy; > 0 such that for all M C RP
such that dg (M, M) < € < rchys/2,

sup |dJW('T7y) — d(M)E ('Tvy)| S &,
zAYEM

where (M)¢ := {u € RP | d(u, M) < €} is the e-offset of M.

du (M, N Y Mparcu

27



From Manifold Estimation to Metric Learning

Theorem (Aamari, Berenfeld, Levrard — 2023)

Assume that M C RP js C2-smooth. Then there exists rchy; > 0 such that for all M C RP
such that dg (M, M) < € < rchys/2,

sup |dJW('T7y) — d(M)E ('Tvy)| S &,
zAYEM

where (M)¢ := {u € RP | d(u, M) < €} is the e-offset of M.

du (M, N Y Mparcu

27



From Manifold Estimation to Metric Learning

Theorem (Aamari, Berenfeld, Levrard — 2023)

Assume that M C RP js C2-smooth. Then there exists rchy; > 0 such that for all M C RP
such that dg (M, M) < € < rchys/2,

sup |dJW('T7y) — d(M)E ('Tvy)| S &,
zAYEM

where (M)¢ := {u € RP | d(u, M) < €} is the e-offset of M.

du (M, N Y Mparcu

27



From Manifold Estimation to Metric Learning

Theorem (Aamari, Berenfeld, Levrard — 2023)

Assume that M C RP js C2-smooth. Then there exists rchy; > 0 such that for all M C RP
such that dg (M, M) < € < rchys/2,

sup |dJW('T7y) — d(M)E ('Tvy)| S &,
zAYEM

where (M)¢ := {u € RP | d(u, M) < €} is the e-offset of M.

du (M, Y Mparcu

27



From Manifold Estimation to Metric Learning

Theorem (Aamari, Berenfeld, Levrard — 2023)

Assume that M C RP js C2-smooth. Then there exists rchy; > 0 such that for all M C RP
such that dg (M, M) < € < rchys/2,

sup |dJW('T7y) — d(M)E ('Tvy)| S &,
zAYEM

where (M)¢ := {u € RP | d(u, M) < €} is the e-offset of M.

du (M, Y Mparcu

27



Better Manifold Estimation, Better Metric Learning

vy MpaTcH
28



Manifold estimation = Dimensionality redu

0 61,2 coc S1.m
F) 0 A 5
Metric learning 2t 2o Multidimensional scaling
‘Sn,l 5n,2 0

Dimensionality reduction

29



Manifold estimation = Dimensionality reduction

i,
>~ “\\ G
j N O
\, :
\ &
\ e
\ %
%
0 61,2 S1.m
F) 0 A 5
Metric learning 2t 2o Multidimensional scaling
‘Sn, 1 5n,2 0

Dimensionality reduction
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Regularity in nonparametric
geometric problems



Regularity

M

v

Usual regularity classes (Holder, Sobolev, Besov) control increments

If @) = F@)Il < Lz —yll°.
(L, B) drives the difficulty of the statistical problem.

30



Regularity Without Coordinates?

; , ,

Usual regularity classes (Holder, Sobolev, Besov) control increments

If @) = F@)Il < Lz —yll°.
(L, B) drives the difficulty of the statistical problem.

Without natural coordinates, “||f(x) — f(v)||" = ?
30



Support Estimation

Bl

Data: A n-sample X1,...,X,, '~ P.
Goal: Estimate the set C' = Support(P) = ﬂ K.
KCRP closed
P(K)=1

31



Support Estimation

Data: A n-sample Xq,..., X, gk 2
Goal: Estimate the set C' = Support(P) = ﬂ K.
KCRP closed
P(K)=1
c Ch

If we know (by advance) that C' is convex, a good candidate is

Cp = Conv({X1,...,Xp}). a



Support Estimation

Bl

Data: A n-sample X1,...,X,, ~ P.
Goal: Estimate the set C' = Support(P) = ﬂ K.
KCRP closed
P(K)=1

du(C.C.)

If we know (by advance) that C' is convex, a good candidate is

Cp = Conv({X1,...,Xp}). a



Support Estimation: Convex Case(s)

Theorem (Diimbgen, Walther — 1996)

Assume that P = Unif¢ is uniform over the convex set C' C RP. Write

X, ={Xy,...,X,}, and C, = Conv(X,).

— Then,

1

~ 1 D
dn(C,X,) = dy(C,Cp) = O ( Og"> as

n

— If in addition OC' is C?,

Q&
®

2



Beyond Convexity

How to model the support of these data?

— Low-dimensional and curved — Submanifold of R”.
— Not convex, but locally around it the projection uniquely defined.

33



Beyond Convexity

How to model the support of these data?

— Low-dimensional and curved — Submanifold of R”.
— Not convex, but locally around it the projection uniquely defined.

Reminder: For a closed set C c R?,

Every z € R” has a unique nearest neighbor on C

CCcRPi &
- is convex iie. A wo(z) € C with ||z — me(2)| = d(z,C).

33



Medial Axis

The medial axis of M C R” is the set of points that have > 2 nearest neighbors on M:

Med(M) := {z € R” | 2 has several nearest neighbors on M}.

Medial axis of a curve

34



For a closed subset M < RP, the reach rchy; of M is the least distance to its medial axis:

rchys == Ilél]{[d (z,Med(M)),

where for all z € RP, d(z, K) := inf ||z — p||.
peEK

One can also flip the formula:

rchyy = inf  d(z, M).
z€Med (M)

35



Local Regularity

High curvature < Small radius of curvature = rchy < 1.

36



Local Regularity

High curvature < Small radius of curvature = rchy < 1.

Proposition (Federer — 1959, Niyogi et al. — 2006)

Let ITM denote the second fundamental form of M. For all unit tangent vector v € T,,M,
||I]’_y(v,v)|| < 1/rchyy.
As a consequence, the sectional curvatures k of M satisfy

—2/rch3; < K < 1/rch3,. 36



Global Regularity

Narrow bottleneck structure = rchy < 1.

37



Noiseless manifold estimation



Boundariless Statistical Model

D, CTND. ¢% b P, where M = Support(P) C RP satisfies:

— M is a compact connected d-dimensional submanifold,
— M has no boundary,

— rchas > rchy,n >0,

— P is (almost) the uniform distribution on M.

The set of distributions satisfying these conditions is denoted by P.

M



A Reconstruction Theorem

Theorem (Aamari, Levrard — 2018)

If P € P, one can compute an estimator MPATCH based on data points X,, such that w.h.p.,

logn 2/d
- .

i (M, Meyren) < C (

Here, C = Cien, . .4 does not depend on the ambient dimension D.

min

39



A Reconstruction Theorem

Theorem (Aamari, Levrard — 2018)

If P € P, one can compute an estimator MPATCH based on data points X,, such that w.h.p.,

logn 2/d
- .

dy (M, MPATCH) <C (

Here, C = Cien, . .4 does not depend on the ambient dimension D.

Min s

— Other estimators achieving the same Hausdorff rate:

- Empirical risk manifold minimizer [Genovese et al. — 2012]
- Local Tangent Delaunay triangulation [Aamari & Levrard — 2019]
- Local convex hulls [Divol — 2020]

39



Ingredient I: Approximation Theory

Theorem (Aamari, Levrard — 2019)

For A < rchy,in, assume that we have a point cloud X' C RP that is:

— close to M : max d(z, M) < Az/rchmin,
TE

— a covering of M : sup d(p, X) < A,
peEM

together with a family T x of linear spaces that

— approximate tangent spaces: ma}((Z(TﬂM(I)M , Tm) < A/rchpin
xTE

One can build a local linear estimator Meyren (X, Tx) such that di (M, Mparca) < A2 /rchumin.

40
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Ingredient I: Approximation Theory

Theorem (Aamari, Levrard — 2019)

For A < rchy,in, assume that we have a point cloud X' C RP that is:

— close to M : max d(z, M) < Az/rchmin,
TE

— a covering of M : sup d(p, X) < A,
peEM

together with a family T x of linear spaces that

— approximate tangent spaces: ma}((Z(TﬂM(I)M , Tm) < A/rchpin
xTE

One can build a local linear estimator Meyren (X, Tx) such that di (M, Mparca) < A2 /rchumin.

-

.-
Bl
et A
.- =
B
.

R

256

IN
L)
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Ingredient I: Approximation Theory

NIPATCH = U BTT(O,A)

/%*\jfﬁwcn

M

Y X

N¥7—=’/‘/%

41



Ingredient Il: Local PCA

Define TJPCA to be a minimizer of

TJPCA € arg min P,(lj) {Hx — 7TT(CC)H2 1g(0,n) (x)} ,
T

where:
- Pr(L” denotes the integration with respect to %Z[# Ox,—X;»

- T ranges in the set of d-planes of R,

42



Ingredient Il: Local PCA

Define TJPCA to be a minimizer of

T} € argmin PY) (llz = 72 (@) 1a0m(@)]

where:

= P denotes the integration with respect to = Ze# Ox,—x
- T ranges in the set of d-planes of R”.

Theorem (Aamari, Levrard — 2019)
Picking h < (logn/n)'/4, then with high probability,
1<j<n n

logn 1/
max /(Tx, M, TPCA) ( ) ,

where Z(T,T") := |77 — 77| op-
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Manifold Estimation from Random Sample

Proposition (Aamari, Levrard — 2019)
An iid. n-sample X, = {X1,...,X,} of P € P=P  tulfills:

rchmin

- max d(X;,M)=0 - sup d(p, X;,) < (log ’l/'l’)l/d-
X;eXy pEM

The family of d-planes T;lgnCA built from local PCA fulfills

a < 1/d
Xr?gg(n L(Tx,M,Tx,) < (logn/n) ",

= With high probability, we get precision:

- logn 2/d
e=dn (1\47 MPATCH) S ( ) .

n

This rate is minimax optimal

43



Optimality: Studying the Minimax Risk

The minimax risk over the statistical model P is

inf sup Ep» [dH (M, M,L)] ,
M, PEP

where M,, = an(Xn) ranges over all the estimators based on data X,, = {Xy,..., X, }.
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Optimality: Studying the Minimax Risk

The minimax risk over the statistical model P is

inf sup Ep» [dH (M, M,,L)] ,
N, PEP
where M,, = an(Xn) ranges over all the estimators based on data X,, = {X1,..., X, }.

Proposition (Genovese et al — 2012)

For n large enough,

inf sup Epn [dH(M7 an)} <C <logn> d ,
N, PEP n

where C' = Cy rcn

min
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Optimality: Studying the Minimax Risk

The minimax risk over the statistical model P is

inf sup Ep» [dH (M, M,,L)] ,
N, PEP
where M,, = infn(Xn) ranges over all the estimators based on data X,, = {X1,..., X, }.

Proposition (Genovese et al — 2012, Kim & Zhou — 2015)

For n large enough, (+ mild technical assumptions)

. (logn) " = ol g B [dH(M,Mn)} <C <logn> 3
n M, PeP n

where C = Cy ych,,, and ¢ = Creh,,,, -
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Lower Bound Technique: Le Cam’s Lemma

Theorem (L. Le Cam)
For all Py, P, € P,

inf sup Epn [dyg (M, M,)] > L a0, My)(1—TV(Py, P1))",
M, PEP 2

where

TV(Py,P1) = sup |Py(B)— Pi(B)]
BEB(RP)

denotes the total variation distance between Py and P;.
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Lower Bound Technique: Le Cam’s Lemma

Theorem (L. Le Cam)
For all Py, P, € P,

inf sup Ep» [du (M, M,)] > 1olH(MO, M) (1—TV(Py, P1))",
M, PEP 2

where

TV(Py,P1) = sup |Py(B)— Pi(B)]
BEB(RP)

denotes the total variation distance between Py and P;.

Deriving a good lower bound amounts to find Py, P; such that:

= Po,Pl e P,
- dH(]\/fo,]\/fl) is Iarge,
- TV (P, Py) is small.
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Le Cam’s Lemma Heuristic

46



Le Cam’s Lemma Heuristic

— Py and P; both belong to P as soon as 1 < /2,
- dH(]\/fo,J[l) 2 ’I],
— TV(Py, P1) < 04,
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Le Cam’s Lemma Heuristic

— Py and P; both belong to P as soon as 1 < /2,
— du(Mo, M) > n,
— TV(Py, P1) < 04,

Hence, for n ~ 2 and ¢ ~ (1/n)"/¢,

inf sup Epn [du (M, M,)] 27 (1 — )" = 2 (1 - 09" =~ (1/n)*/?.
M, PEP
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What if the Curve isn’t Closed?

Perform local PCA at each point X; € X,
Tj € arg minP,(lj) [Hx — 7TT(9C)||2 lB(Oym(ac)} ,
TeGP.d
and take
J\TIPATCH = U Bj;v?‘ (0 h)
=1
+ Local PCA still estimates tangent spaces up to angle < (logn/n)'/.
- Nearby "boundary points”, the patches extend too far away from M.

/ %*\mmﬂ

X \
\
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Boundary Manifold Model

We let P9 .= pdD . denote the set of distributions P over RY such that

rchmin,tchg mi
e lts support M = supp(P) C RP satisfies:
— M is a C? submanifold with boundary;
— M has reach bounded away from zero rchy; > rchy, > 0;
— OM has reach bounded away from zero rchpas > rchg min > 0.

M M

~—_ =

e P is roughly uniform on M:
f =dP/dvoly exists and fimin < f < fiax-
48



Insights on Boundary Point Detection
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Insights on Boundary Point Detection

......... e e e cmamE e At e 4w e Do
. e
- x
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Boundary Observations: Definition

Write
Vorl) (X;) i= {0 € 73| B(0, 110 — mz, (Xi = X)) (g, (B(X;, Ro) N X — X;) =0 }.
Define the set of boundary observations as

Vrorp i= {Xi € X,, | 3X; € B(X,,r) N Xps.t. Diam(Vor) (X)) > p} .

@‘

X
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Boundary Observations: Definition

Write
Vorl) (X;) i= {0 € 73| B(0, 110 — mz, (Xi = X)) (g, (B(X;, Ro) N X — X;) =0 }.
Define the set of boundary observations as

Vagrp = {X,- € X,, | 3X; € B(X,,r) N Xps.t. Diam(Vor) (X)) > p} .

X
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Boundary Observations: Definition

Write
Vorld) (X;) := {o e T ]é(o, 10 =z, (Xi = X)) Nz, (B(X;, Ro) N X — X;) = @} .
Define the set of boundary observations as
Vagrp = {X,- € X,, | 3X; € B(X,,r) N Xps.t. Diam(Vor) (X)) > p} .

,"7"’ “‘- X/I: (,"

50



Boundary Observations: Definition

Write
Vorl) (X;) i= {0 € 73| B(0, 110 — mz, (Xi = X)) (g, (B(X;, Ro) N X — X;) =0 }.
Define the set of boundary observations as

Vagrp = {X,- € X,, | 3X; € B(X,,r) N Xps.t. Diam(Vor) (X)) > p} .

50



Boundary Observations: Definition

Write
Vorl) (X;) i= {0 € 73| B(0, 110 — mz, (Xi = X)) (g, (B(X;, Ro) N X — X;) =0 }.
Define the set of boundary observations as

Vagrp = {X,- € X,, | 3X; € B(X,,r) N Xps.t. Diam(Vor) (X)) > p} .
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Boundary Observations: Illustration
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Guarantees for Boundary Detection and Normals

Choosing the parameters properly, we have the following with high probability:

If OM =0, then Yryrp = 0;
If OM # 0 then:

For all X; € Yry,rp,

2
d(X;,0M) < (10g n> A
n

For all z € OM,

1

logn \ 4+1
d(‘/‘l;'/yRo-"‘v/—’) S, < Og n) .

n

For all X; € VRyrp

logn) Ga

||777TE9]VI(Xi) - ’F]ZH S ( n
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Guarantees: lllustration

Write .
A = (k)g”) B .
n

/
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Guarantees: lllustration

Write .
A = (k)g”) B .
n

Q
!
/ A
i P
7AN / ~
_ ___t\-—#\:'\‘——:}l’_\ - Ta,l
X x T3
N N A2
a7
X
X
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Boundary Estimation

Boundary points Y ) —
] ) = local linear patches OM
Boundary's tangents estimates Tj ;

oA oM
B ey
x x“\\‘\\
< ) ]
N\
x \X\{
o2 X

|
/
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Boundary Estimation

Boundary points Y ) =
] ) = local linear patches OM
Boundary's tangents estimates Tj ;

|

x\x\\l

A

|
/

oM oM
A

X x‘\\xv

\\

\

Theorem (Aamari, Aaron, Levrard — 2023)

logn> T

n

E[dy (0M, 8/]\\/[)] < ( (minimax optimal over Pfc’}fmmmha’mm)
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Estimation with Boundary

Boundary & Interior points V & X, \ Y
Boundary's tangents estimates Tgﬂ- = local linear patches / half-patches M

Manifold’s tangents estimates 10
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Estimation with Boundary

Boundary & Interior points V & X, \ Y
Boundary's tangents estimates Tgﬂ- = local linear patches / half-patches M

Manifold’s tangents estimates 10

Theorem (Aamari, Aaron, Levrard — 2023)

logn) T

n

E[dn (M, M\)] < ( (minimax optimal over Plflc’}? )

min,T'Cha min

55



Le Cam’s Lemma Heuristic
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Le Cam’s Lemma Heuristic

0 Mo My N [

\\\\\\\‘\\\\\\\\ §

y

— Py and P; both belong to P? as soon as n < (2,
- dH(]\/[(), ]\[1) 2 n
- TV(P(),P]) Sgd_l’ﬂ.
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Le Cam’s Lemma Heuristic

OMo M N [

\\\\\\\‘\\\\\\\\ §

y

— Py and P; both belong to P? as soon as n < (2,
— du(Mo, M) > n,
~ TV(By, P,) < £4-1.

Hence, for n =~ (2 and ¢ ~ (1/n)1/(d+1),

inf sup Epn [dH (M, N[n)] > (1 - €d71n)n ~ 02 (1 B €d+1)n ~ (1/n)2/(d+1) '
M, PEP
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Mobius strip
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Influence of noise



Additive Noise

Crucial limitation: If significant noise is added, all the above methods fail!

S G,
XX R S

LA

Figure 2: Circle with additive noise amplitude o > 0
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A Zoology of Noise Models

As opposed to nonparametric regression, many natural noise models:

oY =X+4ewithXeM
and X 1l ¢ € RP such that E[X] =0 (Convolution)
[Fefferman et al. 2019]; [Genovese et al. 2012]

oV =X+ewithXeM
and € € (Tx M)~ such that E[g|X] =0 (Orthogonal noise)
[Genovese et al. 2012b]; [Puchkin and Spokoiny 2022]

e Y ~ Unif e (Ambient uniform)
[Aizenbud and Sober 2021]
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A Zoology of Noise Models

As opposed to nonparametric regression, many natural noise models:

oY =X+4ewithXeM
and X 1l ¢ € RP such that E[X] =0 (Convolution)
[Fefferman et al. 2019]; [Genovese et al. 2012]

oV =X+ewithXeM
and € € (Tx M)~ such that E[g|X] =0 (Orthogonal noise)
[Genovese et al. 2012b]; [Puchkin and Spokoiny 2022]

e Y ~ Unif e (Ambient uniform)
[Aizenbud and Sober 2021]

Take away:
Minimax rates for manifold estimation in the presence of noise are not fully understood.
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About Noise not Being Centered

pEM
sE[Y|X = 4] |
N y
4 S om
4 '
(a) (b)
Figure 3: From [Aizenbud and Sober 2021]
Problem

An error in the tangent space yield apparent noise not centered, whatever the type of noise.
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Alternating local PCA and Nonparametric Regression

Iterative algorithm [Puchkin and Spokoiny 2022] and [Aizenbud and Sober 2021]

Tangents Initialize local coordinates with local PCA at scale hg >~ 1.
Denoising In these coordinates, apply classical nonparametric regression at scale hy < hg.

Tangents Store these new local coordinates and associated denoised points
Denoising In these coordinates, apply classical nonparametric regression at scale hy < hj.

i
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Alternating local PCA and Nonparametric Regression

Iterative algorithm [Puchkin and Spokoiny 2022] and [Aizenbud and Sober 2021]

Tangents Initialize local coordinates with local PCA at scale hg >~ 1.
Denoising In these coordinates, apply classical nonparametric regression at scale hy < hg.

Tangents Store these new local coordinates and associated denoised points
Denoising In these coordinates, apply classical nonparametric regression at scale hy < hj.
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Clutter Noise

,P/Bclutter _ {BP-F (1 _ﬂ)QmP c ,P}

‘#”‘WN

Theorem (Aamari, Levrard — 2018)

With a decluttering procedure removing points from Qo = Unifp (g r), we can build an
estimator such that

2
. 1 :
sup Epn [dH(M, Afn)} < <Ogn>
Pep(clutter) n

Remark: This procedure may fail for other Qq's, even if Q)¢ is known.
64



Parameter Selection



r-Convex Hull

For all t > 0, the t-convex hull of A C RP is
Convs(A) := U Conv(A),

ocCA
rad (o)<t

where rad(o) is the radius of the smallest ball enclosing o

Figure 4: from Vicent Divol's PhD Defense 65
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r-Convex Hull

For all t > 0, the t-convex hull of A C RP is
Convs(A) := U Conv(A),

ocCA
rad (o)<t

where rad(o) is the radius of the smallest ball enclosing o

Figure 4: from Vicent Divol's PhD Defense 65



Reconstruction from r7-Convex Hull

Let t*(A) := inf {t < rchys |mp (Convy(A)) = M }

Figure 5: from Vicent Divol's PhD Defense

66



Reconstruction from r7-Convex Hull

Let t*(A) := inf {t < rchys |mp (Convy(A)) = M }

Figure 5: from Vicent Divol's PhD Defense

= To reconstruct, need to pick ¢ > t*(A) but as small as possible. 66



Reconstruction from r7-Convex Hull

Theorem (divol2021minimax)

There exists C' = Cp > 0 such that picking t = C' (log n/n)l/d, then for all P € P and n > 1
large enough,

logn)wd

dig (M, Conve(X,)) < < ”
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Reconstruction from r7-Convex Hull

Theorem (divol2021minimax)

There exists C' = Cp > 0 such that picking t = C' (log n/n)l/d, then for all P € P and n > 1

large enough,

logn 2/d
an(01, Comvi(,)) 5 (£2)
n
Limitation
In practice, need to the constant C'.
(or equivalently t)

Idea
Compare each estimator Conv,(X,,) with the one Conv,(X,,) = X, of the
family.

67



Convexity Defect Function

The convexity defect function of A C RP at scalet >0 is

h(t, A) := di (A, Convy(A))

68



Convexity Defect Function

The convexity defect function of A C RP at scalet >0 is
h(t, A) := du (A, Conv.(A))

If rchps > 0, then h(t, M) < 2 /rchy,
For point clouds A = X,,, the behavior looks like this:

1.04
Bl
O 0.8
(<
—
[
T 0.6
>
=
& 0.4
>
s
O 02
Linear regime Subquadratic regime
%%% 0.2 0.4 0.6 08 1.0
t

68
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Scale Parameter Choice

Given 0 < X < 1, define
tA(A) :=inf{t € Rad(A)|h(t, A) < At},
where Rad(A4) = {rad(o)}sca-

—— Convexity defect
—-- Line of slope A = 0.681 7

Oy

Figure 7: from Vicent Divol's PhD Defense
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Scale-Free Manifold Estimation

Theorem (divol2021minimax)

Uniformly over P, for all n > 1 large enough,

n

logn 2/d
EP" [dH(M7 COth/\(Xn)(Xn))] SJ ( ) ’

Convexity defect
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Scale-Free Manifold Estimation

Theorem (divol2021minimax)

Uniformly over P, for all n > 1 large enough,

logn 2/d
EP" [dH(M7 COth/\(Xn)(Xn))] SJ ( ) ’

Convexity defect

Remark: This method is not fully parameter-free: choice of A > 1.

Yet, A = 1/+/2 works (theoretically) for any dimension d > 1. 70



Smoother Manifolds



More Regularity

Definition (C? Regularity Class)

Submanifolds M € C2,  have local parametrizations

U, : T,M — M C RP
v— p+ v+ Ny(v)

where N, (0) =0, doN, = 0 and [|d,Np|lop < [|v]l/(2rchmin).
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More Regularity

Definition (C* Regularity Class, k > 3)
Let L = (Lo, L3, ..., L), and define Cfchmm,L to be the subset of elements M € CZ,  that
have local parametrizations

U, T,M — M CRP
v+— p+ v+ Ny(v)

where N, (0) = 0, dgN, = 0 and ||d,N, o, < L; for 2 <i < k.
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Local PCA

Recall that P = LY, dx,_x,, and

77 € argmin PY) [[lz — 7 (2)[PI{B(0, )} (@)] .
TeGP:d

GP4 :  space of d-dimensional linear subspaces of R”;
wp . orthogonal projection onto 7.
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Local Polynomials

Define (IA}‘-’DLY,TQJ, o T ,j) to be a minimizer of

P

k-1
[ =77 (z ZT )®) IPI{B(0, h) }(= )]

where
T: ranges in Gr4;

T@:  ranges in the set of i-linear maps (2 <4 < k — 1).

Similar methods in Cazals06; Chengl6; sober2020manifold. 73



Convergence of Local Polynomials

Theorem (Aamaril9b)

1/d
fh=c("2)", for all P € PY,

min, L’

k
~ logn
Ep- dH(M,Mm)s( 5 ) .

n

< This rate is minimax optimal.
— Estimation of tangent spaces and curvature in the process 74
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