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Dimension estimation



Hyperparameters

Most of the methods crucially required two types of parameters.

Bandwidths

For building neighborhood graphs (All methods)

k-nearest neighbors

r-neighborhood

For building functions on the graph

Kernel scale σ or t (Laplacian methods, k-PCA)

Localization radius h in local PCA (Hessian LLE, LTSA)

Dimension

For determining the output dimension

Dimension is inherent to dimensionality reduction.
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Intrinsic Dimension

Pioneers in intrinsic dimension estimation

This question dates back to bennett1969intrinsic in signal processing.

Overview

See camastra2016intrinsic for a recent survey.
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A Statistical Remark

We are trying to estimate a discrete quantity

d ∈ {0, . . . , p}

If x1, . . . , xn ∼iid UnifM , we hence expect fast estimation rates of the form

P
(
d̂ ̸= dim(M)

)
≤ C exp(−C ′n),

where d̂ = d̂(x1, . . . , xn) is some wisely chosen estimator.

A Take-Away Message

# {Definitions of dimension} ≍ # {Estimators of dimension} ≫ 1
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Hausdorff and Information Dimension

The Hausdorff dimension dimH(M) of M ⊂ Rp is defined through

Γ
(d)
H := lim

r→0+
inf

x1,...,xN∈S
ri≤r

∪iB(xi,ri)⊃M

∑
i

rdi ,

and dimH(M) := inf
{
d | Γ(d)

H = 0
}
∈ [0, p]
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Hausdorff and Information Dimension

Definition

The information dimension dimH(P ) of a probability measure P , is the smallest Hausdorff

dimension of sets that have measure 1.

(For non-pathological cases, dimH(P ) = dimH(Support(P )))
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(Generalized) Traveling Salesman Problem

kim2019minimax study the testing problem

H0: dim(M) = d0 VS H1: dim(M) = d1

where 1 ≤ d0 < d1 ≤ p are fixed.

Generalized TSP Leverage of the behavior of the generalized Travelling Salesman Problem

(TSP) value

TSPd0(X ) := min
σ∈Sn

n∑
i=1

∥xσ(i+1) − xσ(i)∥d0 ,

where Sn is the set of permutations of {1, . . . , n}.

Intractability

Generalized TSP is NP-complete
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Insights Behind Generalized TSP

TSPd0
(X ) := min

σ∈Sn

n∑
i=1

∥xσ(i+1) − xσ(i)∥d0
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Insights Behind Generalized TSP

TSPd0
(X ) := min

σ∈Sn

n∑
i=1

∥xσ(i+1) − xσ(i)∥d0

d0 < dim(M)
TSPd0

(X ) → ∞
d0 = dim(M)

TSPd0
(X ) = Θ(1)

d0 > dim(M)
TSPd0

(X ) → 0
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TSP Test

For 1 ≤ d0 < d1 ≤ p fixed,

d̂(X ) :=

{
d0 if TSPd0

(X ) ≤ C,

d1 otherwise.

Convergence Result

Theorem (kim2019minimax)

Assume that M is C2 smooth and x1, . . . , xn ∼iid P uniform on M . If dim(M) ∈ {d0, d1},
then

P
(
d̂(X ) ̸= dim(M)

)
≲ 1dim(M)=d1

(
1

n

)(
d1
d0

−1
)
n
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TSP Estimator

Define

d̂(X ) := min {d0 |TSPd0
(X ) ≤ Cd0

}

Convergence Result

Theorem (kim2019minimax)

If that M is C2 smooth and x1, . . . , xn ∼iid P uniform on M , then

P
(
d̂(X ) ̸= dim(M)

)
≲

(
1

n

) n
p−1
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Differential / Topological Dimension

Definition

The topological dimension of M ⊂ Rp is the dimension dimR(M) of the model space that

locally parametrizes it.

⇒ Local flatness (Essentially assuming manifold structure)

h

Xj
T̂PCA
j

↪→ Thresholding principal components fukunaga1971algorithm
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Local linear residuals

Step 1: Localize

Pick a point x ∈ X , a localization radius h > 0, and set

X̃h(x) := X ∩B(x, h)− x

Step 2: Singular Value Decomposition

Compute the SVD of the matrix associated with X̃h(x). Store the singular values λ1 ≥
. . . ≥ λp.

Step 3: Vary thresholds

Plot the residual error (or explained variance)

d 7→
∑p

k=d+1 λk∑p
k=1 λk

and search for a gap.
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Illustration

From Local to Global

In practice, need to aggregate the estimated dimensions d̂(x).

Trial and Error

Such a post-hoc error measurement also applies to any (local) MDS-based dimension reduction

technique.
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Nearest Neighbors

Instead of fixing a bandwidth, one can also regressing

k-Nearest Neighbor distances

fukunaga1971algorithm show that if x1, . . . , xn ∼iid

f(x)λd(dx) and x ∈ Rd with f(x) > 0 continuous at

x, then

E[∥x(k) − x∥] ∝ k1/d
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Correlation Dimension

Leveraging local neighborhood properties can also be done by noticing that if x, x′ ⊥⊥∼ λd,

P(∥x− x′∥ ≤ r) ≍ rd.

This leads to the correlation dimension, based on

Cor(2)r (P ) := P
x,x′⊥⊥∼P

(∥x− x′∥ ≤ r),

and defined as

dimcor,2(P ) := lim
r→0

log Cor(2)r (P )

log r
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Correlation Dimension

Estimator

Given x1, . . . , xn ∼iid P , consider the U-statistic

Ĉor
(2)

r :=
2

n(n− 1)

∑
i<j

1∥xi−xj∥≤r,

with associate dimension estimator

d̂cor,2 := lim
r→0

log Ĉor
(2)

r

log r

Convergence

See results in kegl2002intrinsic and higher-order.
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Covering Number

Definition

Given M ⊂ Rp, the r-covering number of M is

cvM (r) := min
{
N

∣∣∃z1, . . . , zN ∈ Rp s.t. M ⊂ ∪N
i=1B(xi, r)

}
The r-dimension of M is dimr(M) :=

log cvM (r)

− log r
.

For M = [0, 1]d,

cvM (r) ≍
(
1

r

)d
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Minkowski / Capacity Dimension

Definition

The Minkowski (or Capacity) dimension of M is

dimMin(M) := lim sup
r→0

dimr(M).

Insights

If dimMin(M) = d, we expect that

log cvM (r) ∼r→0 −d log r

Regression

We can regress

r 7→ log cvX (r)
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Minkowski / Capacity Dimension

Two-Scales Estimation

Instead of regression, kegl2002intrinsic uses the fact that for all small r1 < r2,

log cvM (r1)− log cvM (r2)

log r2 − log r1
≃ −d log r1 − (−d log r2)

log r2 − log r1
= d.

Limitations

Still a choice of bandwidth(s) parameter(s).

Costly to compute directly on data (involves covering numbers).

Wayaround

Try to observe the dimension indirectly on a simpler object.
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Partial Coverings

weed2019sharp introduce the Wasserstein dimension.

Idea

When working with measures instead of sets, it is convenient to be able to ignore a small

fraction of the mass.

Definition

The (r, τ)-covering number of a probability measure P on Rp is

cvP (r, τ) := min {cvS(r) |P (S) ≥ 1− τ } .

Its (r, τ)-dimension is

dimr,τ (P ) :=
log cvP (r, τ)

− log r
.
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Definition (weed2019sharp)

The upper and lower Wasserstein dimensions of P are respectively

d
(p)

(P ) := inf

{
s > 2p

∣∣∣∣lim sup
r→0

dim
r,r

sp
s−2p

(P ) ≤ s

}
d(p)(P ) := lim

τ→0
lim inf
r→0

dimr,τ (P ).

Links with other dimensions

If P (B(x, r)) ≍ rd, then d
(p)

(P ) = d = d(p)(P )

Generalizable to arbitrary ambient metric space.
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Wasserstein Dimension

Convergence of the Empirical Distribution

Theorem (weed2019sharp)

Let p ≥ 1. Assume that x1, . . . , xn ∼iid P on Rd. and write Pn := n−1
∑n

i=1 δxi
for the

empirical measure.

If s > dim
(p)

(P ), then E [Wp(P, Pn)] ≲ n−1/s.

If t < dim(p)(P ), then E [Wp(P, Pn)] ≳ n−1/t.

The upper bound comes from a spatial dyadic decomposition.

The lower bound holds for all distribution Pn supported on n Dirac. It arises from a

quantization argument.

Fine results on Wp(P, Pn) in dedecker2019behavior.
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block2021intrinsic leverage this sharp behavior as follows.

Bootstrap-Style Method

Given 0 < α < 1, subsample: (need 2(1 + α)n independent sample)

Pn, P
′
n each arising from n observations each

Pαn, P
′
αn each arising from αn < n observations each

As

W1(P[α]n, P
′
[α]n) ≍ W1(P, P[α]n) ≍

(
1/([α]n)

)1/d
,

take

d̂W :=
logα

logW1(Pn, P ′
n)− logW1(Pαn, P ′

αn)

Which Wasserstein Metric?

Possibility to use the (estimated) geodesic metric in Wasserstein.
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Geometric inference



Take a step back

Throughout, we have tried to embed points X ⊂ Rp to Y ⊂ Rd while preserving the geometry

of X .

If we assume that X ⊂ M are sample from a submanifold M ⊂ Rp:

Preserving the geometry of X
⇔

dM (xi, xj) ≃ ∥yi − yj∥

The geodesic distance on M (or shortest-path distance)

dM : M ×M −→ R≥0 ∪ {∞}

(x, y) 7−→ inf
γx→y⊂M

C1 curve

∫
∥γ′

x→y∥

What about only estimating dM without embedding?
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Param. / Nonparam. — Regression / Set estimation

Figure 1: from hastie1989principal 24



Hausdorff Distance

Definition (Hausdorff Distance)

The Hausdorff distance between two compact sets A,B ⊂ RD is

dH(A,B) = ∥d(·, A)− d(·, B)∥∞,

where d(x,C) := inf
c∈C

∥x− c∥ is the distance to C ⊂ RD.

AAB

dH(A,B)
a

b

B

dH(A,B)
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Disambiguation

– The distance function to M : (used to identify sets as functions)

d(·,M) : RD −→ R≥0

x 7−→ min
p∈M

∥x− p∥
M

x

d(x,M)

– The geodesic distance on M : (used to characterize the geometry of sets)

dM : M ×M −→ R≥0 ∪ {∞}

(x, y) 7−→ inf
γx→y⊂M

C1 curve

∫
∥γ′

x→y∥ M

x

y

d
M (x, y)
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From Manifold Estimation to Metric Learning

Theorem (Aamari, Berenfeld, Levrard – 2023)

Assume that M ⊂ RD is C2-smooth. Then there exists rchM > 0 such that for all M̂ ⊂ RD

such that dH(M,M̂) ≤ ε < rchM/2,

sup
x ̸=y∈M

∣∣dM (x, y)− d(M̂)ε(x, y)
∣∣ ≲ ε,

where (M̂)ε := {u ∈ RD | d(u, M̂) ≤ ε} is the ε-offset of M .

M

x

ydH(M,X ) M̂ = X
27
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Better Manifold Estimation, Better Metric Learning

M

x

ydH(M,M̂) M̂PATCH

γ̂x→y

M

x

ydH(M,X ) M̂ = X

γ̂x→y
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Manifold estimation ⇒ Dimensionality reduction

Metric learning Multidimensional scaling

Dimensionality reduction


0 δ1,2 · · · δ1,n

δ2,1 0 · · · δ2,n

.

.

.

.

.

.

.
.
.

.

.

.
δn,1 δn,2 · · · 0
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Manifold estimation ⇒ Dimensionality reduction
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Regularity in nonparametric

geometric problems



Regularity

Usual regularity classes (Hölder, Sobolev, Besov) control increments

∥f(x)− f(y)∥ ≤ L ∥x− y∥β .

(L, β) drives the difficulty of the statistical problem.

Without natural coordinates, “∥f(x)− f(y)∥” = ?

30



Regularity Without Coordinates?

Usual regularity classes (Hölder, Sobolev, Besov) control increments

∥f(x)− f(y)∥ ≤ L ∥x− y∥β .

(L, β) drives the difficulty of the statistical problem.

Without natural coordinates, “∥f(x)− f(y)∥” = ?
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Support Estimation

Data: A n-sample X1, . . . , Xn
i.i.d.∼ P .

Goal: Estimate the set C = Support(P ) =
⋂

K⊂RD closed
P (K)=1

K.

If we know (by advance) that C is convex, a good candidate is

Ĉn := Conv({X1, . . . , Xn}).

31
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Support Estimation: Convex Case(s)

Theorem (Dümbgen, Walther – 1996)

Assume that P = UnifC is uniform over the convex set C ⊂ RD. Write

Xn := {X1, . . . , Xn}, and Ĉn = Conv(Xn).

– Then,

dH(C,Xn) ≍ dH(C, Ĉn) = O

(
log n

n

) 1
D

a.s.

– If in addition ∂C is C2,

dH(C, Ĉn) = O

(
log n

n

) 2
D+1

a.s.
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Beyond Convexity

How to model the support of these data?

– Low-dimensional and curved → Submanifold of RD.

– Not convex, but locally around it the projection uniquely defined.

Reminder: For a closed set C ⊂ RD,

C ⊂ RD is convex ⇔ Every z ∈ RD has a unique nearest neighbor on C

i.e. ∃! πC(z) ∈ C with ∥z − πC(z)∥ = d(z, C).
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i.e. ∃! πC(z) ∈ C with ∥z − πC(z)∥ = d(z, C).
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Medial Axis

The medial axis of M ⊂ RD is the set of points that have ≥ 2 nearest neighbors on M :

Med(M) := {z ∈ RD | z has several nearest neighbors on M}.

M

Med(M)

Medial axis of a curve
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Reach

For a closed subset M ⊂ RD, the reach rchM of M is the least distance to its medial axis:

rchM := inf
x∈M

d (x,Med(M)) ,

where for all x ∈ RD, d(x,K) := inf
p∈K

∥x− p∥.

rchM

M

Med(M)

One can also flip the formula:

rchM = inf
z∈Med(M)

d(z,M).
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Local Regularity

M
rchM

Med(M)

High curvature ⇔ Small radius of curvature ⇒ rchM ≪ 1.

Proposition (Federer – 1959, Niyogi et al. – 2006)

Let IIMx denote the second fundamental form of M . For all unit tangent vector v ∈ TxM ,∥∥IIMx (v, v)
∥∥ ≤ 1/rchM .

As a consequence, the sectional curvatures κ of M satisfy

−2/rch2M ≤ κ ≤ 1/rch2M .
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Global Regularity

rchM

M

Med(M)

M ′

Med(M ′)

rchM ′

Narrow bottleneck structure ⇒ rchM ≪ 1.
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Noiseless manifold estimation



Boundariless Statistical Model

X1, . . . , Xn
i.i.d.∼ P , where M = Support(P ) ⊂ RD satisfies:

– M is a compact connected d-dimensional submanifold,

– M has no boundary,

– rchM ≥ rchmin > 0,

– P is (almost) the uniform distribution on M .

The set of distributions satisfying these conditions is denoted by P.

M
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A Reconstruction Theorem

Theorem (Aamari, Levrard – 2018)

If P ∈ P, one can compute an estimator M̂PATCH based on data points Xn such that w.h.p.,

dH
(
M, M̂PATCH

)
≤ C

(
log n

n

)2/d

.

Here, C = Crchmin,d does not depend on the ambient dimension D.

→ Other estimators achieving the same Hausdorff rate:

- Empirical risk manifold minimizer [Genovese et al. – 2012]

- Local Tangent Delaunay triangulation [Aamari & Levrard – 2019]

- Local convex hulls [Divol – 2020]
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Ingredient I: Approximation Theory

Theorem (Aamari, Levrard – 2019)

For ∆ ≲ rchmin, assume that we have a point cloud X ⊂ RD that is:

– close to M : max
x∈X

d(x,M) ≲ ∆2/rchmin,

– a covering of M : sup
p∈M

d(p,X ) ≲ ∆,

together with a family TX of linear spaces that

– approximate tangent spaces: max
x∈X

∠
(
TπM (x)M,Tx

)
≲ ∆/rchmin

One can build a local linear estimator M̂PATCH (X ,TX ) such that dH
(
M,M̂PATCH

)
≲ ∆2/rchmin.

M

X
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πM (x)
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Ingredient I: Approximation Theory

M̂PATCH :=
⋃
x∈X

BTx(0,∆).

M̂PATCH

M
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Ingredient II: Local PCA

Define T̂PCA
j to be a minimizer of

T̂PCA
j ∈ argmin

T
P (j)
n

[
∥x− πT (x)∥2 1B(0,h)(x)

]
,

where:

- P
(j)
n denotes the integration with respect to 1

n

∑
ℓ ̸=j δXℓ−Xj

,

- T ranges in the set of d-planes of RD.

h

Xj
T̂PCA
j

42



Ingredient II: Local PCA

Define T̂PCA
j to be a minimizer of

T̂PCA
j ∈ argmin

T
P (j)
n

[
∥x− πT (x)∥2 1B(0,h)(x)

]
,

where:

- P
(j)
n denotes the integration with respect to 1

n

∑
ℓ ̸=j δXℓ−Xj

,

- T ranges in the set of d-planes of RD.

Theorem (Aamari, Levrard – 2019)

Picking h ≍ (log n/n)1/d, then with high probability,

max
1≤j≤n

∠(TXj
M, T̂PCA

j ) ≲

(
log n

n

)1/d

,

where ∠(T, T ′) := ∥πT − πT ′∥op.
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Manifold Estimation from Random Sample

Proposition (Aamari, Levrard – 2019)

An i.i.d. n-sample Xn = {X1, . . . , Xn} of P ∈ Pd,D
rchmin

fulfills:

- max
Xj∈Xn

d(Xj ,M) = 0 - sup
p∈M

d(p,Xn) ≲ (log n/n)
1/d

.

The family of d-planes T̂PCA
Xn

built from local PCA fulfills

max
Xj∈Xn

∠
(
TXj

M, T̂Xj

)
≲ (log n/n)

1/d
.

⇒ With high probability, we get precision:

ε = dH
(
M,M̂PATCH

)
≲

(
log n

n

)2/d

.

This rate is minimax optimal
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Optimality: Studying the Minimax Risk

The minimax risk over the statistical model P is

inf
M̂n

sup
P∈P

EPn

[
dH

(
M,M̂n

)]
,

where M̂n = M̂n(Xn) ranges over all the estimators based on data Xn = {X1, . . . , Xn}.

Proposition (Genovese et al – 2012)

For n large enough,

(+ mild technical assumptions)

c

(
log n

n

) 2
d

≤

inf
M̂n

sup
P∈P

EPn

[
dH

(
M,M̂n

)]
≤ C

(
log n

n

) 2
d

,

where C = Cd,rchmin

and c = crchmin
.
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Proposition (Genovese et al – 2012, Kim & Zhou – 2015)

For n large enough, (+ mild technical assumptions)

c

(
log n

n

) 2
d

≤ inf
M̂n

sup
P∈P

EPn

[
dH
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Lower Bound Technique: Le Cam’s Lemma

Theorem (L. Le Cam)

For all P0, P1 ∈ P,

inf
M̂n

sup
P∈P

EPn

[
dH

(
M,M̂n

)]
≥ 1

2
dH(M0,M1)

(
1− TV(P0, P1)

)n
,

where

TV(P0, P1) = sup
B∈B(RD)

|P0(B)− P1(B)|

denotes the total variation distance between P0 and P1.

Deriving a good lower bound amounts to find P0, P1 such that:

– P0, P1 ∈ P,

– dH(M0,M1) is large,

– TV(P0, P1) is small.
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Le Cam’s Lemma Heuristic

M0

M1

ℓ

η

– P0 and P1 both belong to P as soon as η ≲ ℓ2,

– dH(M0,M1) ≥ η,

– TV(P0, P1) ≲ ℓd.

Hence, for η ≈ ℓ2 and ℓ ≈ (1/n)
1/d,

inf
M̂n

sup
P∈P

EPn

[
dH

(
M,M̂n

)]
≳ η

(
1− ℓd

)n ≈ ℓ2
(
1− ℓd

)n ≈ (1/n)
2/d

.
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What if the Curve isn’t Closed?

Perform local PCA at each point Xj ∈ Xn:

T̂j ∈ argmin
T∈GD,d

P (j)
n

[
∥x− πT (x)∥2 1B(0,h)(x)

]
,

and take

M̂PATCH :=

n⋃
j=1

BT̂j
(0, h).

+ Local PCA still estimates tangent spaces up to angle ≲ (log n/n)1/d.

- Nearby ”boundary points”, the patches extend too far away from M .

M

M̂PATCHM̂PATCHM̂PATCH
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Boundary Manifold Model

We let P∂ := Pd,D
rchmin,rch∂,min

denote the set of distributions P over RD such that

• Its support M = supp(P ) ⊂ RD satisfies:

– M is a C2 submanifold with boundary;

– M has reach bounded away from zero rchM ≥ rchmin > 0;

– ∂M has reach bounded away from zero rch∂M ≥ rch∂,min > 0.

M M

∂M∂M∂M

• P is roughly uniform on M :

f = dP/dvolM exists and fmin ≤ f ≤ fmax.
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Insights on Boundary Point Detection

∂M

M
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∂M

M
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Insights on Boundary Point Detection

Ω
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Boundary Observations: Definition

Write

Vor
(j)
R0

(Xi) :=
{
O ∈ T̂j

∣∣∣B̊(O, ∥O − πT̂j
(Xi −Xj)∥

)
∩ πT̂j

(B(Xj , R0) ∩ Xn −Xj) = ∅
}
.

Define the set of boundary observations as

YR0,r,ρ :=
{
Xi ∈ Xn | ∃Xj ∈ B(Xi, r) ∩ Xns.t. Diam(Vor

(j)
R0

(Xi)) ≥ ρ
}
.

Xi

∂M ηi
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Boundary Observations: Illustration

πT̂j

Xj M ∩ B(Xj, r)

0

Vor
(j)
R0

(Xj)

M ∩ B(Xj, R0)

Vor
(j)
R0

(Xi)
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Guarantees for Boundary Detection and Normals

Choosing the parameters properly, we have the following with high probability:

If ∂M = ∅, then YR0,r,ρ = ∅;
If ∂M ̸= ∅ then:

For all Xi ∈ YR0,r,ρ,

d(Xi, ∂M) ≲

(
log n

n

) 2
d+1

.

For all x ∈ ∂M ,

d(x,YR0,r,ρ) ≲

(
log n

n

) 1
d+1

.

For all Xi ∈ YR0,r,ρ,

∥ηπ∂M (Xi) − η̃i∥ ≲

(
log n

n

) 1
d+1

.
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Guarantees: Illustration

Write

∆ :=

(
log n

n

) 1
d+1

.

∂M
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Guarantees: Illustration

Write

∆ :=

(
log n

n

) 1
d+1

.

∆

∆2

∂M
ρη̂i

T̂∂,i

Ω
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Boundary Estimation

Boundary points Y
Boundary’s tangents estimates T̂∂,i

}
⇒ local linear patches ∂̂M

∂M ∂̂M

Theorem (Aamari, Aaron, Levrard – 2023)

E[dH(∂M, ∂̂M)] ≲

(
log n

n

) 2
d+1

(minimax optimal over Pd,D
rchmin,rch∂,min

)
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Estimation with Boundary

Boundary & Interior points Y & Xn \ Y
Boundary’s tangents estimates T̂∂,i

Manifold’s tangents estimates T̂i

 ⇒ local linear patches / half-patches M̂

∂M M̂

Y̊

Theorem (Aamari, Aaron, Levrard – 2023)

E[dH(M,M̂)] ≲

(
log n

n

) 2
d+1

(minimax optimal over Pd,D
rchmin,rch∂,min

)
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Le Cam’s Lemma Heuristic

∂M1 η∂M0

ℓ

– P0 and P1 both belong to P∂ as soon as η ≲ ℓ2,

– dH(M0,M1) ≥ η,

– TV(P0, P1) ≲ ℓd−1η.

Hence, for η ≈ ℓ2 and ℓ ≈ (1/n)
1/(d+1),

inf
M̂n

sup
P∈P

EPn

[
dH

(
M,M̂n

)]
≳ η

(
1− ℓd−1η

)n ≈ ℓ2
(
1− ℓd+1

)n ≈ (1/n)
2/(d+1)

.
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Annulus

n = 500 n = 1000 n = 2000 n = 5000
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Spiral

n = 500 n = 1000 n = 2000 n = 5000

Calibration of R0 Calibration of ρ
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Möbius strip

n = 500 n = 1000 n = 2000 n = 5000

Calibration of R0 Calibration of ρ
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Influence of noise



Additive Noise

Crucial limitation: If significant noise is added, all the above methods fail!

Figure 2: Circle with additive noise amplitude σ > 0
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A Zoology of Noise Models

As opposed to nonparametric regression, many natural noise models:

• Y = X + ε with X ∈ M

and X ⊥⊥ ε ∈ RD such that E[X] = 0 (Convolution)

[Fefferman et al. 2019]; [Genovese et al. 2012]

• Y = X + ε with X ∈ M

and ε ∈ (TXM)⊥ such that E[ε|X] = 0 (Orthogonal noise)

[Genovese et al. 2012b]; [Puchkin and Spokoiny 2022]

• Y ∼ UnifMσ (Ambient uniform)

[Aizenbud and Sober 2021]

Take away:

Minimax rates for manifold estimation in the presence of noise are not fully understood.
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Take away:

Minimax rates for manifold estimation in the presence of noise are not fully understood.
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About Noise not Being Centered

(a) (b)

Figure 3: From [Aizenbud and Sober 2021]

Problem

An error in the tangent space yield apparent noise not centered, whatever the type of noise.
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Alternating local PCA and Nonparametric Regression

Iterative algorithm [Puchkin and Spokoiny 2022] and [Aizenbud and Sober 2021]

Tangents Initialize local coordinates with local PCA at scale h0 ≃ 1.

Denoising In these coordinates, apply classical nonparametric regression at scale h1 < h0.

Tangents Store these new local coordinates and associated denoised points

Denoising In these coordinates, apply classical nonparametric regression at scale h2 < h1.

. . .

M
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Alternating local PCA and Nonparametric Regression

Iterative algorithm [Puchkin and Spokoiny 2022] and [Aizenbud and Sober 2021]

Tangents Initialize local coordinates with local PCA at scale h0 ≃ 1.

Denoising In these coordinates, apply classical nonparametric regression at scale h1 < h0.

Tangents Store these new local coordinates and associated denoised points

Denoising In these coordinates, apply classical nonparametric regression at scale h2 < h1.

. . .

M

T̂(1)

T̂⊥
(1)

x2
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Clutter Noise

P(clutter)
β,Q0

= {βP + (1− β)Q0, P ∈ P} .

denoising

Theorem (Aamari, Levrard – 2018)

With a decluttering procedure removing points from Q0 = UnifB(0,R), we can build an

estimator such that

sup
P∈P(clutter)

EPn

[
dH

(
M,M̂n

)]
≲

(
log n

n

) 2
d

.

Remark: This procedure may fail for other Q0’s, even if Q0 is known.
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Parameter Selection



r-Convex Hull

For all t ≥ 0, the t-convex hull of A ⊂ Rp is

Convt(A) :=
⋃
σ⊂A

rad(σ)≤t

Conv(A),

where rad(σ) is the radius of the smallest ball enclosing σ.

Figure 4: from Vicent Divol’s PhD Defense
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Reconstruction from r-Convex Hull

Let t∗(A) := inf {t < rchM |πM (Convt(A)) = M }

t < t∗(A) t ≥ t∗(A)

Figure 5: from Vicent Divol’s PhD Defense

⇒ To reconstruct, need to pick t > t∗(A) but as small as possible.
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Reconstruction from r-Convex Hull

Theorem (divol2021minimax)

There exists C = CP > 0 such that picking t = C (log n/n)
1/d, then for all P ∈ P and n ≥ 1

large enough,

dH(M,Convt(Xn)) ≲

(
log n

n

)2/d

.

Limitation

In practice, need to calibrate the constant C.

(or equivalently t)

Idea

Compare each estimator Convt(Xn) with the most overfitting one Convt(Xn) = Xn of the

family.
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Convexity Defect Function

The convexity defect function of A ⊂ Rp at scale t ≥ 0 is

h(t, A) := dH(A,Convt(A))

If rchM > 0, then h(t,M) ≤ t2/rchM
For point clouds A = Xn, the behavior looks like this:

Linear regime Subquadratic regime

t∗(A)

Figure 6: from Vicent Divol’s PhD Defense
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Scale Parameter Choice

Given 0 < λ ≤ 1, define

tλ(A) := inf{t ∈ Rad(A)|h(t, A) ≤ λt},

where Rad(A) = {rad(σ)}σ⊂A.

Figure 7: from Vicent Divol’s PhD Defense
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Scale-Free Manifold Estimation

Theorem (divol2021minimax)

Uniformly over P, for all n ≥ 1 large enough,

EPn

[
dH

(
M,Convtλ(Xn)(Xn)

)]
≲

(
log n

n

)2/d

.

Linear regime Subquadratic regime

t∗(A)

Remark: This method is not fully parameter-free: choice of λ ≥ 1.

Yet, λ = 1/
√
2 works (theoretically) for any dimension d ≥ 1.
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Smoother Manifolds



More Regularity

Definition (C2 Regularity Class)

Submanifolds M ∈ C2
rchmin

have local parametrizations

Ψp : TpM −→ M ⊂ Rp

v 7−→ p+ v +Np(v)

where Np(0) = 0, d0Np = 0 and ∥dvNp∥op ≤ ∥v∥/(2rchmin).

M

TpM

p

Np(v)

v
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More Regularity

Definition (Ck Regularity Class, k ≥ 3)

Let L = (L2, L3, . . . , Lk), and define Ck
rchmin,L

to be the subset of elements M ∈ C2
rchmin

that

have local parametrizations

Ψp : TpM −→ M ⊂ Rp

v 7−→ p+ v +Np(v)

where Np(0) = 0, d0Np = 0 and ∥divNp∥op ≤ Li for 2 ≤ i ≤ k.

M

TpM

p

Np(v)

v
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Local PCA

Recall that P
(j)
n = 1

n

∑
ℓ ̸=j δXℓ−Xj , and

T̂ PCA
j ∈ argmin

T∈GD,d

P (j)
n

[
∥x− πT (x)∥2I{B(0, h)}(x)

]
.

Gp,d : space of d-dimensional linear subspaces of Rp;

πT : orthogonal projection onto T .

h

Xj
T̂PCA
j
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Local Polynomials

Define
(
T̂ POLY
j , T̂2,j , . . . , T̂k−1,j

)
to be a minimizer of

P (j)
n

[
∥x− πT (x)−

k−1∑
i=2

T (i)
(
πT (x)

⊗i
)
∥2I{B(0, h)}(x)

]
,

where

T : ranges in Gp,d;

T (i): ranges in the set of i-linear maps (2 ≤ i ≤ k − 1).

h
Xj

T̂ POLY
j

Similar methods in Cazals06; Cheng16; sober2020manifold. 73



Convergence of Local Polynomials

Theorem (Aamari19b)

If h = C
(

logn
n

)1/d

, for all P ∈ Pk
rchmin,L

,

EPn dH
(
M,M̂POLY

)
≲

(
log n

n

) k
d

.

h
Xj

T̂ POLY
j

↪→ This rate is minimax optimal.

↪→ Estimation of tangent spaces and curvature in the process 74
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